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Abstract

The modeling of the energy storage system (ESS) of a hybrid electric vehicle

(HEV) poses a considerable challenge. The problem is not amenable to physical

modeling without simplifying assumptions that compromise the accuracy of such models.

An alternative is to build conventional empirical models. Such models however, are time-

consuming to build and are data-intensive.

In this paper, we demonstrate the application of an artificial neural network

(ANN) to modeling the ESS. The model maps the system’s state-of-charge (SOC) and the

vehicle’s power requirement to the bus voltage and current. We show that neural network

models can accurately capture the complex, non-linear correlations accurately. Further,

we propose and deploy our new technique, Smart Select, for designing neural network

training data. The underlying principle of Smart Select is to design training data such that

it is uniformly distributed over the entire range of an appropriate ANN output variable,

which is typically the variable that is most difficult to model. In this case, we selected

training data that was uniformly distributed over the current range. We show that smart-

select is economical in comparison with conventional techniques for selection of training

data. Using this technique and our in-house neural network software (the CUANN), we

developed an artificial neural network model (inputs=2, hidden neurons=3, outputs=2)

utilizing only 4047 of the available 29,244 points. When validated on the remaining

points, its predictive accuracy, measured by R-squared error, was 0.97.

Finally, we describe the integration of the ESS neural network model into the

MATLAB-SIMULINK environment of NREL’s Advanced Vehicle Simulator

(ADVISOR).
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1.0 Introduction
A growing dependence on foreign oil, along with a heightened concern over the

environmental impact of personal transportation, has led the U.S. government to

investigate and sponsor research into advanced transportation concepts. One of these

future technologies is the hybrid electric vehicle (HEV), typically featuring both an

internal combustion engine and an electric motor, with the goal of producing lower

emissions while obtaining superior fuel economy. Figure 1 below lists the typical

components found in an HEV.

The Department of Energy’s National Renewable Energy Laboratory (NREL) has

developed an HEV simulator, called the ADvanced VehIcle SimulatOR (ADVISOR).

This simulator facilitates the optimization of HEV configurations with different

subsystems, for best fuel economy and emission level. ADVISOR requires models of the

individual components of a HEV, such as the propulsion unit and the energy storage unit.

Figure 1: The HEV system is composed of subsystems.

One way to develop models of HEV components is through rigorous analytical

procedure. This is typically time-consuming and the simplifying assumptions required to

make the analysis tractable impair the value of such models. An alternative is to employ

conventional empirical methods, which are variations of the classical regression theme.

These models are unwieldy and are usually only suitable for low-end non-linearities. In

this paper, we present the artificial neural network as a practical alternative to analytical

and empirical methods that is accurate and easy to use.
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2.0 The Artificial Neural Network

Neural networks are computational models of the biological brain. The biological

brain of an adult human is composed of several billion neurons. If all the neurons in one

adult human brain were laid out end-to-end, they would stretch for several hundred miles.

While each neuron is functionally simple, the neurons are massively interconnected,

through adjustable, directed links. It is believed that this parallel distributed processing

architecture of the human brain is responsible for its remarkable abilities.

A neural network is comprised of artificial neurons. An artificial neuron, like its

biological counterpart, is a simple computational element. It first performs a weighted

sum of its inputs (see Figure 2). This sum is referred to as the activation of the neuron.

Then, the neuron applies a non-linear sigmoid transformation (see Figure 3) to modulate

its activation.

Figure 2: The artificial neuron.

Figure 3: The non-linear sigmoid activation function.

The neural network is composed of a layered arrangement of neurons that are

interconnected (see Figure 4) by weighted interconnections. Note the three-layered

structure of the schematic representation in Figure 4. The INPUT layer has a neuron for
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each input, the OUTPUT layer has a neuron for each output, and the HIDDEN layer

(there may be several hidden layers) comprises processing neurons. These

interconnection weights (represented by matrices [W1] and [W2]) are adjustable.

Figure 4: An artificial neural network.

Such a neural network translates into a mathematical function. For the network

with one hidden layer, as shown in Figure 3, the function is

Where:

§ I is the vector of inputs;

§ W is the matrix of interconnection weights, with its superscript denoting the

layer as per Figure 3 ( W1 = W(1) );

§ Y is the vector of outputs.

The power of artificial neural networks lies in the theorem which says that given

sufficient hidden neurons the function represented by an artificial neural network can

approximate any function, however non-linear, to arbitrary accuracy in a finite domain. A

neural network starts out with random weights, and the weights are adjusted until the

required degree of accuracy is obtained. In the context of a neural network, this is

learning. To train a neural network an algorithm called backpropagation is employed.
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With backpropagation, the convergence of a neural network to the mapping underlying

its training data is guaranteed.

3.0 Energy Storage System (ESS)

Batteries are used for storage of electrical energy in hybrid electric vehicles.

Batteries store and deliver electrical energy chemically by initiating and reversing

chemical reactions respectively. One ESS option is the conventional lead-acid battery.

Lead-acid technology is mature and economical. In addition to the lead-acid battery, there

are newer options such as nickel metal hydride (Ni-MH) and lithium-ion (Li-ion)

batteries. The ESS is normally comprised of a bank of batteries in series.

Of all the sub-systems constituting a hybrid electric vehicle, the energy storage

system is probably the most difficult to understand and model.  Although a battery is a

simple electrical energy storage device that delivers and accepts energy, the highly non-

linear nature of its electrochemical processes makes it difficult to model. 

 Figure 5 represents the general scheme of the ESS module as required to be

implemented in ADVISOR. This block accepts a power request (Pr), and depending on

the state-of-charge (SOC) of the battery pack, returns the bus voltage (V) and current (I).

The ESS output power is simply the product of the bus voltage and current.

Figure 5: A schematic of the ESS.

In the original version of ADVSIOR, the ESS model was based on the circuit as shown in

Figure 6. The open-circuit voltage of the battery-pack (Voc) and its internal resistance

(Rint) are computed as functions of the SOC. Applying straightforward circuit law

analysis, I and V are computed from Voc, Rint and Pr.

ESS MODULE
IN ADVISOR

Power Requested

SOC

V

I
Power = VI
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Figure 6: Principle of the ESS simulation.

Implementation details of the ESS simulation in the MATLAB-SIMULINK graphical

programming environment are shown in Figure 7. Figure 7 comprises four internal

modules:

§ a module to compute pack voltage and internal resistance;

§ a module to limit output power;

§ a module to compute bus voltage and current;

§ a module to update the battery SOC.

Step-by-step explanations of each internal module are given are provided in Appendix A.

Figure 7: Original ESS simulation in ADVISOR.

+

-

Rint = f(SOC)

Voc= f(SOC)
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Figure 8: Optima Data
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This simulation is based on empirical correlations between the SOC and the open-circuit

voltage (Voc) and internal resistance (Rint) of the battery pack. The bus voltage and

current are derived from Pr, Voc and Rint analytically, by application of circuit law. The

empirical correlations are piece-wise regression models. Develop of the regression

models is a time-consuming task. It would be simpler to collect battery data and develop

a neural network to predict bus voltage and current with Pr and SOC as its inputs.

Accordingly, battery data was collected and neural network based models of the ESS

were developed. The neural networks mapped SOC and Pr (inputs) to V and I (outputs).

4.0 Neural Network Modeling of the ESS

To start with, neural networks were trained with data collected from an Optima

lead-acid battery for charge, discharge and driving cycles. One example of each type of

cycle is shown in Figure 8. The files are described in Table 1. The schematic of the

neural network is shown in Figure 9.

Figure 9: Schematic of neural network models in ESS simulation, with Optima data.

Notice that the average battery temperature is an input to the network. Temperature was

included as an input because it influences the electrochemical processes of a battery. Also

note that the state of charge of the battery pack was represented by its non-normalized

value in Ampere-Hours (A-H). Further, it was reasoned that it would be best to use only

the data from the driving cycles for training neural networks. This is because driving

cycle data is representative of the operative performance of a battery, and is therefore

more likely to capture process dynamics than a charge or discharge cycle. Thus, neural

Pr
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networks were developed with a total of 32,254 data points for training, testing and

validation.

4.1 Dynamic Neural Networks

In order to capture the dynamic element of battery behavior, a dynamic neural

network was constructed.  The schematic of a dynamic neural network is shown in

Figure 10.

Figure 10: Schematic of a dynamic neural network models for ESS simulation.

In a dynamic neural network, one of more of the outputs is used as input with time delay.

This means, that the selected output variables at one step serve as inputs for the next step.
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Multiple time delay elements may be employed, as shown in Figure 10. Such networks

capture the dynamics of the process, i.e. the influence of previous states on the

subsequent states. Neural networks were built with one, two and three dynamic elements

for both outputs (V and I).

It was observed that the dynamic neural networks did not perform very well.

Further, the performance of a neural network with one time delay was the best and that of

the network with three time delays was the worst.

Figures 11 and 12 show the results of training a neural network with one time

delay. The driving cycle “fuds13a” was employed for training, testing and validation. Of

the 6105 data points of this cycle, 2399 points, evenly distributed in chronological

sequence, were used for training and testing, and the network was validated upon all the

6105 points.

Figure 11 shows the neural network performance on voltage prediction and Figure

12 shows the performance on current prediction.  Figure 11-(A) shows the predicted and

actual voltage on the time axis. The prediction error is shown in Figure 11-(B). Figure

11-(C) is a plot of the actual voltage versus the predicted voltage. The red line indicates

100% accuracy of prediction. Clearly, the network does a reasonable job of voltage

prediction. The average prediction error1 is 0.27% and the MSE is nearly zero. However,

Figure 12 shows that the prediction of current can be improved further. The average

prediction error is 1.47% and the mean squared error (MSE) is 0.12, while the R-squared

error is 0.96.

The improvement of performance with fewer time delay elements strongly

suggests that a static model could be more accurate. It is possible that the dynamic

element of the model was captured in the SOC algorithm, used in conjunction with the

neural network. It was therefore decided to develop static neural networks.

                                                       
1 The percent error was measured relative to the prediction range, as the ratio of the difference between the
target and predicted values to the prediction range.
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Network Perfomance - Current
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4.2 Static Neural Networks
To build static neural networks, training data was sampled at random from each

driving cycle. The training data comprised 6000 data points (1200 from each driving

cycle). Neural networks were trained and then validated on the entire data set of 32,254

points.

A   clear  improvement  in  performance  was  observed.  Compare  Figure 13  and

12-(C). Figure 13 is a plot of the actual current versus the predicted current, for validation

over the driving cycle “fuds13a”. The error in prediction of current was 0.53%. The MSE

is 0.08 and the R-squared error is 0.99. Observe, moreover, from Figure 13, that the error

is severe only in the tail portion of the current space. In fact, this peculiar behavior was

observed for all static networks trained with data randomly sampled from the driving

cycles.

Figure 13: Static ANN Performance - Current.

It was determined that the distribution of training data was uneven over the

current space.  This is clearly reflected in Figure 14, which is a histogram of the data

distribution vis-a-vis current, for the driving cycle “fuds13a”. More than 70% of the data

is confined to less than 30% of the current space.
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It was therefore decided to sample training data for an even distribution over the current

space. This is our smart-select technique, described in the next section.

4.3 The Smart-Select Technique

Figure 14: Uneven distribution of data vis-à-vis current.

The underlying principle of the Smart-Select technique is to design training data such that

it is uniformly distributed over the entire range of an appropriate output variable. This

variable is the one that is most difficult to model by the neural network. Conventional

Design of Experiments (DOE) mandates an even distribution of training data over all

variables – the inputs as well as the outputs. Such a full-factorial DOE scheme is data-

intensive. It is subject to the ‘curse of dimensionality’ whereby the size of the training

data set increases exponentially with the resolution of the variables. The problem of data-

explosion is attenuated by a partial-factorial DOE. But, even with partial factorial DOE,

the time required to select training data from an available data set is prohibitively large.

This problem is what Smart-Select solves. Applying Smart-Select, the data is sampled so

that the training data has an even distribution vis-à-vis one output variable only. The

variable selected is the output variable that is more intractable than the others. For the

neural network model of the ESS, the intractable output variable was the current.

Accordingly, the training data was designed with the objective of ensuring an even

distribution of data with respect to this variable. See Figure 15.
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Figure 15:  Histogram showing even distribution of data vis-à-vis current.

4.4 ANN with Smart-Select

The Smart-Select technique was implemented by a C++ program (see

Appendix B). 1583 data points were sampled from the driving cycles. The points were

sampled in approximately equal measure from each driving cycle.

Neural networks were trained on these 1583 points. The best neural network had 1

hidden layer with 4 neurons. Figure 16 shows the performance of the neural network for

validation over the driving cycle “fuds13a”. Figure 16-(A) is a plot of the prediction

error, and Figure 16-(B) is a plot of the actual current versus the predicted current. The

average prediction error is 0.6%, the MSE is 0.0057 and the R-squared error is 0.9993.

4.5 Sensitivity to Temperature

To test the sensitivity of the ESS model to temperature, temperature was dropped

as an input and a neural network was trained as in 4.4, with the same training data but

minus the temperature information. There  was  no  deterioration  in the  network
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performance. Since it is known that temperature exerts significant influence on battery

performance, it was determined that the effect of monotonically increasing temperature

over the driving cycle was masked by the monotonically decreasing SOC. As temperature

added no value to the input, it was excluded from further consideration.

5.0 ANN Integration into ADVISOR

At this stage, the static neural network described in section 4.5 was incorporated

into ADVISOR. Neural networks were created in MATLAB, using the Neural Network

Toolbox. [A back-propagation neural network is created in MATLAB using the “net”

command. (See Appendix C.) The SIMULINK block diagram of a neural network is

created using the “gensim” command.]

Note that pilot tests conducted on neural networks implemented using MATLAB

showed inferior learning capability vis-a-vis the CUANN. Therefore, networks created in

MATLAB were used only in the prediction mode, and network weights were derived

from the CUANN. (See Appendix C for how the transfer of weights was performed.)

Accordingly, the network of 4.4, without the temperature input, was created. It

was ascertained that this network functioned correctly in the prediction mode. Then, the

network was incorporated into the SIMULINK block diagram of the ESS as shown in

Figure 17.

The results of an ESS simulation with the ANN incorporated in ADVISOR are

shown in Figure 18. Figure 19 shows the results of a matching ESS simulation with the

original ADVISOR algorithm. A comparison of Figures 18 and 19 clearly reveals that

this neural network implementation is unacceptable. As seen in Figure 18, the achieved

vehicle speed falls consistently short of the required speed (topmost graph) for the

duration of the driving cycle. This is unlike the results of the original ESS simulation for

the same driving cycle in Figure 19, where the achieved speed matches the desired speed

at all times (topmost graph).  The shortfall in speed is a result of a lack of power. Since

the original ESS simulation results indicate that the ESS is capable of meeting the power

request throughout this driving cycle, the lack of power is a result of poor predictive

capability of the neural network.
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5.1 Investigation of Unsatisfactory Performance

Figure 20 shows the performance of the ANN on the driving cycle “HWFET” of

ADVISOR. It is a plot of the power requested versus the power achieved over the

HWFET driving cycle. The red line is representative of 100% prediction accuracy. The

network is accurate only over a small region of the power space.

The explanation for this is straightforward: poor prediction accuracy is observed

where the prediction points are outside the range of the training data. In other words, the

network’s performance was poor for data outside the range of its training data. This is

clearly reflected in Figure 20 - the range of the input variable Pr in the training data is

marked with a thick line on the horizontal axis.

Table II shows the range of each of the input and output variables for the

experimental data and the training data. From table III, it is seen that the range of the

input variable Pr in the case of some of the ADVSIOR driving cycles, exceeds its range in

the training data.

Further investigation revealed that the experimental A-H data was not being

updated  according  to the SOC algorithm in ADVISOR. The SOC algorithm is explained

Figure 20: ANN Prediction on HWFET.
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Figure 21: Offset in Experimental A-H Data.

in Appendix A (Block 4: SOC Algorithm). Figure 21 clearly shows that the A-H

computed by the SOC algorithm is offset from the experimental A-H data by a constant

amount for each data point of the cycle. The initial SOC was not properly initialized.

Since new driving cycle data had been collected for a Hawker lead-acid battery,

which had more consistent tabulation of net Ah with SOC, the Optima data was replaced

by the Hawker data. To verify the experimental data, the ESS model was formulated

through regression models. The original ESS model employed look-up tables to correlate

the SOC to the open-circuit voltage and internal resistance as explained in Appendix A.

(Block 1: Computation of Pack Open Circuit Voltage and Internal Resistance). A

regression analysis was performed and piece-wise regression models were developed to

replace the look-up tables. (See Appendix III.) With these regression models, and circuit

analysis laws (see Appendix A, Block 3: Compute Current and Voltage) a formulation

was developed for the ESS, correlating the input variables (Pr and SOC) with the output

variables (V and I). See Figure 22. The Hawker data was verified with respect to this

formulation, to ensure its suitability for training the network.
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6.0 ANN with Hawker Data

Neural networks were developed with the Hawker data. It was noted that the

experimental data acquisition rig introduced noise due to inconsistent sampling rate of

multiple data acquisition systems.

Figure 22: ESS Formulation with Regression.

The new data set comprised 29,244 points of one driving cycle. These points were

employed for training, testing and validation. Figure 23 is a histogram showing the

distribution of the raw data vis-à-vis current. The non-uniformity of distribution of data

vis-à-vis current is evident. Therefore, as before, the Smart-Select methodology was

applied for selection of training data. 4047 points, sampled by Smart-Select, were

employed for training and testing. Figure 24 is a histogram of the training data vis-à-vis

current. The entire set of 29,244 points of the driving cycle was employed for validation.

The best neural network had one hidden layer with three neurons. Figure 25 shows the

validation performance of the neural network on a set of 2000 points of the driving cycle.

The network performance is adequate. The average prediction error on the entire Hawker

data set is 1.16%. The MSE is 0.0247 and the R-squared error is 0.9652. These results are

not the best obtained so far. However, they are comparable to the results of prediction

with the ESS formulation on the same data, which yields an average prediction error of

0.99, an MSE of 0.02 and an R-squared error of 0.973. Figure 26 shows, the performance
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of the network on the driving cycle HWFET of ADVISOR. The average prediction error

is 0.0108. The MSE is 0.15. The R-squared error is 0.988. As Figure 27 shows the neural

network’s performance now meets the requirements of the ADVISOR simulation.

Figure 23: Uneven distribution of raw data vis-à-vis current.

Figure 24: Even distribution of training data vis-à-vis current with Smart-Select.
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Figure 25: ANN Validation Performance.

Figure 26: ANN Prediction on HWFET.

7.0 Conclusions and Results

We have demonstrated that the ESS of an HEV can be adequately modeled by the

artificial neural network. We have also demonstrated the effectiveness of the Smart-

Select technique for design of training data for an ANN.

We started with dynamic neural network models trained with Optima data. The

best dynamic neural network had one dynamic element and its performance (on current

prediction) was:

l Prediction Error – 1.47% l MSE – 0.12 l RSE – 0.96

Static neural networks showed better performance. The performance of the best static

neural network (on current prediction) was:

l Prediction Error – 0.53% l MSE – 0.08 l RSE – 0.99
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By application of the Smart-Select technique for selection of training data, the

performance was further improved. The performance on current prediction was now:

l Prediction Error – 0.6% l MSE – 0.0057 l RSE – 0.9993

The static neural network developed with Hawker data had the performance figures:

l Prediction Error – 1.16% l MSE – 0.0247 l RSE – 0.9652

Although this was not the best performance, no improvement in performance could be

achieved without improving the quality and consistency of the experimental data. The

neural network’s performance was comparable to that of the original, circuit-law analysis

based algorithm, which was:

l Prediction Error – 0.99% l MSE – 0.02 l RSE – 0.973

This level of accuracy proved to be adequate for the ESS simulation in ADVISOR.

8.0 Potential Areas for Investigation

• Integration of complete ANN capability into ADVISOR.

• Modeling the IC engine of the HEV.

• Optimization of IC engine performance by ANN-RSM.

• Diagnosis of IC engine problems with an ANN monitor.

• Modeling other HEV components.
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Table I:

Description of OPTIMA data files.

File Name Cycle Type Duration
(sec)

Size (# Data
Points)

25cc1 Charge 2378.26 80
25cc2 Charge 1625.43 55
25cd1 Discharge 2257.69 76
25cd2 Discharge 1926.19 65
40cc1 Charge 2669.47 226
40cc2 Charge 1570.37 117
40cc5 Charge 582.52 59
40cd1 Discharge 2671.09 226
40cd2 Discharge 1519.17 112
40cd5 Discharge 757.41 74
fuds10 Driving 1581.69 7404
fuds13a Driving 1773.46 6105
fuds13b Driving 1502.7 6049
gdstc Driving 3333.5 5179
gdstd Driving 5291.25 7517

Total Data Points in Driving Cycles - 32254

Table II:

Range of the input and output variables for the driving cycles.

Power (KW) Ampere-Hours Voltage (Volts) Current (Amps)
CYCLE Min Max Min Max Min Max Min Max
Fuds10 -1.59 1.69 -6.46 -5.46 10.3 16.4 -154.8 103.2
Fuds13a -2.10 2.01 -5.39 -4.68 10.1 16.2 -207.7 124.3
Fuds13b -2.04 1.80 -6.86 -5.94 10.1 15.2 -200.2 119.7
Gdstc -0.80 1.99 -12.69 -1.43 10.7 16 -74.2 131
Gdstd -1.58 1.21 -12.73 0.00 9.9 15.3 -155.4 79.2

Training
Data

-2.106 1.797 -12.73 -0.005 9.9 16.4 -207.7 119
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Table III:
Range of the variable ‘Power Requested’ for ADVISOR driving cycles.

Power Requested (KW)
CYCLE Min Max
ARB02 -2.4017 3.112359
HL07 -1.52347 3.292739
US06 -1.82609 2.756176
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APPENDIX A: The original empirical-analytical implementation of the ESS module in

ADVISOR.

In ADVISOR, the overall schematic implementation of the ESS module is as

shown in Figure 5. This block accepts a power request (Pr), and depending on the state-

of-charge (SOC) of the battery, returns the bus voltage (V) and current (I). The ESS

output power is the product of the bus voltage and current. In the original version of

ADVSIOR, the algorithm was implemented as represented in Figure 6. The open-circuit

voltage of the battery-pack (Voc) and its internal resistance (Rint) are computed as

functions of the SOC. Then, applying circuit law analysis, I and V are computed from

Voc, Rint and Pr. Implementation details of the ESS simulation in the MATLAB-

SIMULINK graphical programming environment are shown in Figure 7. The Figure 7

comprises four internal modules:

§ a module to compute pack voltage and internal resistance;

§ a module to limit output power;

§ a module to compute bus voltage and current;

§ a module to update the battery SOC.

Block 1: Computation of Pack Open Circuit Voltage and Internal Resistance.

This block calculates Voc and Rint given the SOC and Pr.

(1) Interpolated look-up tables for Voc and Rint (charging and discharging) are used to

determine these parameters from the SOC for a single battery.

(2) The appropriate resistance is chosen, depending on whether the power requirement is

for charging (negative power by convention) or discharging (positive power by

convention).

(3) Voc and Rint are scaled by the number of batteries in the pack.

Block 2: Limit Power.

This block prevents the power that is used to compute the bus current from exceeding

limits imposed by three factors: SOC, equivalent circuit parameters, and the motor

controller’s minimum allowable voltage.
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(1) If an attempt is made to draw power from a depleted battery pack, the power request

is limited to zero.

(2) If Voc / 2 is greater than the minimum motor controller voltage, then the maximum

power that the battery pack can deliver would not bring the bus voltage down below the

motor controller minimum voltage. In this case, the battery pack is able to produce the

full power of which it is capable, Voc
2 / 4R, and that value is used as the maximum power

limit.

(3) If Voc / 2 is less than the minimum motor controller voltage, then the power is limited

by the minimum motor controller bus voltage. In this case, the motor controller will limit

power before the battery pack reaches its maximum, and so the maximum power limit

reflects the effect of the minimum motor controller voltage limit.

(4) This is where the maximum power limit is calculated, according to the formula: 

where Vbus is either Voc / 2 or the minimum motor controller voltage, whichever is larger. 

Block 3: Compute Current and Voltage.

I and V are computed from Voc, Rint and Pr, applying straightforward circuit law analysis.

(1) Kirchoff's voltage law (KVL) requires that: V = Voc - (Rint x I).

(2) Power is: Pr = V x I. Therefore V = Pr / I.  Combining this equation with the KVL

equation of (1) yields: (Pr / I) = Voc - (Rint x I).  Multiplying both sides of the equation by

I yields Pr = (Voc x I) – (Rint x I2).  This is the equation that is solved for I in the block

diagram:

(Rint x I2) - (Voc x I) + Pr = 0

There are actually two solutions for this equation, but the larger solution is ignored as it

would require larger current, and thus a lower terminal voltage, to produce the same

power. All solutions that require a terminal (or bus) voltage less than half the battery

pack’s open circuit voltage are thus not considered.

intR

VV
VIVP busoc

busbusbusr

−
×=×=
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Block 4: SOC Algorithm.

The SOC algorithm in ADVISOR is responsible for updating the SOC of the battery pack

as it is subject to charging or discharging during service. The procedure is described as a

series of steps.

Discharging -

(1) The average discharge current is computed as the sum of the net charge that has been

withdrawn from the battery pack, divided by the total duration of discharge period. By

convention, discharge current is positive.

(2) The Peukert Equation is applied to compute the effective maximum charge capacity

(in units of Ampere-Hours) of the battery pack corresponding to the average discharge

current.

(3) The effective maximum charge capacity is used to determine the effective starting

charge, in Ampere-Hours, by multiplying it with the initial SOC of the battery pack.

(4) The total charge withdrawn from the battery pack (in units of Ampere-Hours) is

computed as the product of the average discharge current and duration of the discharge

period. This quantity is subtracted from the effective starting charge as obtained by

applying the Peukert equation in (3). This yields the remaining charge of the battery pack

in Ampere-Hours.

(5) The updated SOC is the ratio of the battery pack’s remaining charge as computed in

(4) to the effective maximum charge capacity derived from (3).

Charging:

The procedure is the same as for discharging except that the charging current (negative

by convention) is scaled by a coulombic efficiency factor.
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APPENDIX B: The C++ program for Smart-Select.

This section briefly presents the C++ program that implements the Smart-Select

algorithm with a brief description.

Smart-Select is applied to the input file IN_FILE and the file OUT_FILE is

generated as output. Both files are ASCII text files, and contain data in column format.

The first column of the input file is the ‘key’, with reference to which the program

generates the output. The other columns contain the variable data. The way the key is

used is as follows. From consecutive rows sharing the same key, only the first row is

selected, stripped of the key, and written to the output file. The key may be generated

easily in MS-EXCEL spreadsheet software, by reference to the time data, for example.

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#define IN_FILE "pre_file.txt"
#define OUT_FILE "post_file.txt"

int main()
{

double var1, var2, var3, var4, var5, var6, var7, var8, var9;
char dummy;

ifstream fin;
ofstream fout;

fin.open(IN_FILE);
fout.open(OUT_FILE);

if (fin.fail())
{

   cout << "Failed to open in read mode - file " << IN_FILE;
cin >> dummy;
exit(1);

}
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if(fout.fail())
{

cout << "Failed to open in write mode - file " << OUT_FILE;
cin >> dummy;
exit(1);

}

fin >> var1 >> var2 >> var3 >> var4 >> var5 >> var6 >> var7
>> var8 >> var9;

double temp = var1;
fout << var1 << " " << var2 << " " << var3 << " "

<< var4 << " " << var5 << " " << var6 << " "
<< var7 << " " << var8 << " " << var9 << endl;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "1st - " << var1 << " 2nd - " << var2 << " 3rd - "

<< var3 << " 4th - " << var4 << " 5th - "
<< var5 << " 6th - " << var6 << " 7th - "
<< var7 << " 8th - " << var8 << " 9th - "
<< var9 << endl;

while (fin >> var1 >> var2 >> var3 >> var4 >> var5 >> var6
>> var7 >> var8 >> var9)

{
if (var1 != temp)
{
temp = var1;

fout << var1 << " " << var2 << " " << var3
<< " " << var4 << " " << var5 << " "
<< var6 << " " << var7 << " "
<< var8 << " " << var9 << endl;

   cout.setf(ios::fixed);
   cout.setf(ios::showpoint);
   cout.precision(2);

}
}

fin.close();
fout.close();

cout << "\nEND OF PROGRAM.\n";
cin >> dummy;

return 0;
}
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APPENDIX C: Porting between CUANN and MATLAB .

For this project, the CU-ANN was required to be ported into the MATLAB

environment of ADVISOR. The porting is explained here with the help of a simple

example.

To port a neural network developed by the CUANN software into the MATLAB

environment, it is first required to define a neural network of identical structure in

MATLAB, with its Neural Network Toolbox. To define a feed-forward neural network

in MATLAB, the Neural Network Toolbox  provides the command newff. The anatomy

of this command is described with the following example -

net = newff([0 1; 0 1], [3, 2], {'logsig', 'logsig'});

In this example, the variable net is a two-layer, feed-forward neural network. That means

there is one hidden layer, the other layer being the output layer. The hidden layer has

three neurons and there are two output neurons. The activation function of both layers is a

logistic sigmoid. Note that the range of each input variable is specified as [0 1], since

the CU-ANN automatic pre-processor normalizes the input variables in that range.

The next step is to load the weights of the neural network from the CU-ANN.

For this purpose, text files are created from the CU-ANN as follows:

§ a text file for the bias weights of each layer.

§ a text file for the interconnection weights of each layer.

According to the format of the weight files in the CU-ANN, the weights are organized

layer-wise, as matrices. The bias weights of a layer and the weights of interconnections

with its previous layer are organized as a matrix. The weights of an individual neuron are

organized in a row, with the first element in a row being its bias weight. The rows are

Ranges of the
input variables,
in order.

Sizes of
the
layers, in
order.

Activation
functions
of the
layers, in
order.
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arranged in the order of the neurons. In the example cited, the weights of the hidden layer

would be represented as follows -

Bias Input 1 Input 2 Input 3
Neuron 1 ··· ··· ··· ···
Neuron 2 ··· ··· ··· ···
Neuron 3 ··· ··· ··· ···

The text file for loading the bias weights of a layer would comprise the first column of its

weight matrix in the CU-ANN weight file. The text file for loading its interconnections

with its previous layer would comprise the remaining columns. In the example cited, the

weight assignment would require four text files, two for each layer. The weight

assignment in MATLAB would be as follows;

net.IW{1, 1}=weights_10;

net.b{1, 1}=weights_10b;

net.LW{2, 1}=weights_21;

net.b{2, 1}=weights_21b;

In the MATLAB environment, the hidden layer connecting to the input layer is

identified as net.IW{1, 1}. The weights of any other layer are identified as net.LW{a,

b} where a is the number of the layer and b is the number of the layer with which it is

interconnected. The numbering system starts with the first hidden layer in the feed-

forward direction, which is standard practice. The same notation has been used in this

example to label the text files, with a trailing ‘b’ indicating that the file contains bias

weights.

Now, the neural network is ready for prediction. The Neural Network Toolbox

provides the command sim for this purpose. The anatomy of this command is as follows:

a = sim(net, in)

Note that the input vectors are presented to the network in row format. Correspondingly,

the outputs are also in row format. The inputs require to be normalized in the range [0, 1].

The normalization is performed as follows:

network
variable

output:
vectors
in row
format

input:
vectors in
row format
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where the superscript labels the input variable, and the maximum and minimum values

refer to the training data. The CU-ANN normalizes the output variables in the range [0.2,

0.8], so the output a has to be de-normalized as follows:

where, the superscript labels the output variable, and the maximum and minimum values

refer to the training data.

This concludes the discussion on portability of the CU-ANN.
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